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Abstract—In this paper, we extend the well-studied results
of the two-pursuer, single-evader differential game to any
number of pursuers. The main objective of this investigation is
to exploit the benefits of cooperation amongst the pursuers in
order to reduce the capture time of the evader. Computational
complexity is a chief concern as this problem would need to
be solved in an online fashion, e.g. in the case of autonomous
unmanned aerial vehicles. A new geometric approach to
solving the game is introduced and analyzed, which changes
the problem of optimizing over continuous domains to a
discrete combinatoric optimization. While past efforts at
solving multiple pursuer problems have suffered from the
curse of dimensionality, the geometric algorithms put forth
here are shown to be scalable. Categorization and removal of
redundant pursuers is the primary means by which scalability
is achieved. The solution of this problem serves as a stepping
stone to more complex problems such as the M-pursuer N-
evader differential game.

I. Introduction
Pursuit-evasion scenarios have been extensively stud-

ied and they represent an important research area with
applications to autonomous vehicles, robots, and sys-
tems. Several interesting pursuit-evasion problems were
formulated in the seminal work by Isaacs [1]. Breakwell
and Hagedorn [2] studied the dynamic game of a fast
pursuer trying to capture in minimal time two slower
evaders in succession. Motivated by the work in [2], the
paper [3] analyzed the case where the fast pursuer tries
to capture multiple evaders.

Games with multiple pursuers that try to capture
an evader have also been addressed in [4], [5]. Thus,
a dynamic Voronoi diagram has been used in scenarios
with several pursuers in order to capture an evader within
a bounded domain [5], [6]. The work in [7] considers
a group of pursuers are assigned to intercept a set of
evaders where the dynamics and goals of the evaders
are assumed to be known to the pursuers. The so-called
Prey, Protector, and Predator game was formulated
in [8] in order to model rescue missions in the presence
of obstacles. In this paper we address the problem of
multiple pursuers trying to capture in minimum time a
single evader.

The main result of this paper is to provide a solution
to the M-pursuer one-evader differential game. This
represents an important extension of the two-pursuer

one-evader differential game (or the two cutters and a
fugitive ship as labeled by Isaacs [1]) to the case of M-
pursuers. Through explicit cooperation, the pursuers seek
to capture the evader in minimum time, while the evader
strives to maximize the capture time. The advantage of
having multiple cooperative pursuers is that, depending
on the initial positions of the players, the capture time
in the M-pursuer one-evader differential game is less
than the capture time without their cooperation. It will
be shown that in this generalized problem a new type
of solution appears with respect to the one-pursuer or
the two-pursuer case. Depending on the initial positions
of the agents, the evader’s best strategy is to remain
inside its dominance region and await capture. Otherwise,
fleeing at max speed in any direction will be detrimental
to the evader since the capture time will decrease.

It will also be shown that, in general, the pursuers can
be assigned to different categories: interceptor, escort,
and redundant. It is important to note that even though
redundant pursuers are not essential to the differential
game and they can be removed without affecting the
outcome and value of the game, the solution provided
in this paper is the solution to the fully cooperative
M-pursuer one-evader differential game. The approach
in this paper considers full cooperation among pursuers
and is not based on decomposition to avoid the high-
dimensionality of the state space of the differential game
with multiple agents as in other approaches [9], [10], [11].

Finally, the solution of the M-pursuer one-evader dif-
ferential game along with the categorization of pursuers,
brings us one step closer to the seemingly intractable
M-pursuer N-evader differential game. In such scenario
it is necessary to consider the possible combination
of assignments, which pursuers try to capture which
evaders, in addition to the undesired property of very
high dimensional state space. It is expected that the
solution of the differential game studied in this paper will
be fundamental in addressing the assignments required
in the case of multiple evaders.

The remainder of the paper is organized as follows. Sec-
tion II contains the problem formulation and Section IV
refines the formulation into a solvable problem. Section V
introduces a new geometric approach to solving the



(xP1
, yP1

)

P1

−→vP1

(xPi
, yPi

)

Pi

−→vPi

φi

(xPM
, yPM

)

PM

−−→vPM

(xE , yE)

E θ

−→vE , |−→vE | ≤ vEmax

+
(x, y)

. . .

. .
.

|−→vP1
| = . . . = |−→vPi

| = vP

Fig. 1. Nomenclature and definitions for the M pursuer 1 evader
problem. Pursuers are marked by triangles and the capture point
is indicated by a +.

problem, Section VI specifies several useful algorithms,
Section VII contains simulation results, and Section VIII
contains the conclusion.

II. Problem Formulation

The problem of multiple pursuers capturing a single
evader is considered in this paper in the setting of a two
dimensional plane. Figure 1 contains the nomenclature
and definitions for this problem. The objective of the
pursuers is to cooperate in order to minimize the time to
capture, while the objective of the evader is to maximize
the time to capture (i.e. maximize the time of survival).
We assume that the velocity of each pursuer, vPi

, is
greater than the velocity of the evader, vE , so that
capture can be guaranteed for any evader strategy. For
reasons that will become clear later, the problem can be
stated

Problem 1 (M Pursuer 1 Evader). Given the locations
and speeds of each agent, find the point in the plane for
the evader to travel such that it maximizes its capture
time given that the pursuers’ objective is to minimize
this time.

We assume that both pursuers and evaders perform
simple motions and that the pursuers all share the same
velocity, vP . Additionally, we assume that the pursuers’
speed is fixed and is not a control input. From this point
forward, without loss of generality, we consider the case
when (xE , yE) = (0, 0) and vEmax = 1. Thus, we redefine
the pursuer velocities as a ratio: αP =

vEmax
vP

, αP ∈ (0, 1).
The simple motions of E and the ith pursuer Pi are

described by the following kinematic equations
ẋE = cos θ, ẏE = sin θ, θ ∈ [0, 2π)

ẋPi =
cosϕi

αP
, ẏPi =

sinϕi

αP
, ϕi ∈ [0, 2π), i = 1, . . . ,M

(1)
where both θ and ϕi can change instantaneously and
are generally considered to be functions of time. For
convenience of notation, let d(·, ·) represent the Eu-
clidean distance between two points. Additionally, let
E = (xE , yE) and Pi = (xPi

, yPi
).

III. Technical Preliminaries
In order to define the problem more formally, it is

necessary to define capture. Let T represent the time of
capture as a function of the initial conditions, the evader’s
target point, (x, y), and the heading angle policies of the
pursuers:

T : R2×M+1 ×R2 × ΦM → R+

where the heading angle policies of the pursuers are
represented as Φi = ϕi(t), i = 1, . . . ,M, 0 < t. Next,
we say that capture occurs at the first time such that a
pursuer’s position coincides with the evader’s position:

T = min t s.t. ∃ i s.t. (xE(t), yE(t)) = (xPi
(t), yPi

(t))
(2)

If, for some pursuer policies Φi, i = 1, . . . ,M this
condition is never satisfied, then T = ∞. The following
constraints are also necessary for T to represent a valid
capture time,

x2 + y2 ≤ T 2 (3)
∃ i s.t. (x− xPi

)2 + (y − yPi
)2 = T 2/α2

P (4)

Note that (3) ensures that the evader can reach the
capture point (x, y) in T time. Similarly, (4) ensures that
at least one pursuer reaches the capture point in exactly
T time. The reason that the evader’s constraint, (3),
contains an inequality rather than equality is because
the evader may need to travel to the point (x, y) and
stop to maximize survival time, thereby reaching (x, y)
in time less than T . Consider, for example, an evader
surrounded by a ring (M > 2) of equidistant pursuers,
as in Figure 2a. Pursuers are marked by a triangle and
the evader is marked by a blue circle. The Apollonius
circles are shown for each pursuer as a green circle and
the solution point is marked by a +. In this case, the
evader should remain at (0, 0). A detailed analysis on the
optimality of the evader’s path to this point is left for
future research; however, we note that the path is not
unique as in [12]. Two particular equivalent interpreta-
tions to this idea of the evader stopping (i.e. vE ∈ {0, 1})
are: (1) the evader chooses a speed to reach (x, y) in
exactly t time (i.e. vE ∈ [0, 1]) and (2) the evader,
upon reaching (x, y), changes heading infinitely often
such that its position remains at (x, y) (i.e. vE = 1).
In Figure 2b the evader’s initial position is moved such
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Fig. 2. Evader surrounded by a ring of pursuers (a) solution is to
stand still and (b) offset of (0.3, 0.3) is applied to evader’s initial
position and solution degenerates to capture by two pursuers

that the solution degenerates to capture by two pursuers
as described in [13].

IV. Methods of Solution

We now refine the statement of Problem 1 as

max
x,y

min
Φ1,...,ΦM

T (5)

subject to (3), (4)

In defining the problem this way, the evader is given
freedom to select the capture point (x, y), while the
pursuers are each free to select their heading angle policy,
Φ. There are two issues with this definition. The first is
that the pursuers may capture the evader before it could
reach (x, y). A refinement of the constraints on (x, y)
are necessary to prevent this possibility. The second is
that (5) contains a minimization over multiple continuous
functions which makes it difficult to reason about.

It is helpful to consider this problem in the context of
regions of dominance in the R2 plane [14]. For two agents
with identical speed, their respective regions of domi-
nance are half-spaces partitioned by the bisector between
their positions. The region of dominance represents the
points in space that can be reached by a particular agent
before any other agent, assuming a constant heading
angle and maximum velocity. Boundaries of regions of
dominance represent the points in space that can be
reached simultaneously by the agents under the same
assumptions. When the velocities of the agents are not
identical, the region of dominance becomes an Apollonius
circle Ai. In this case, since vP > vE , the evader position
xE lies inside Ai and xPi lies outside Ai. The set of the
ith circle Ai is given by

Ai =

{(
x− xPiα

2
P

α2
P − 1

)2

+

(
y −

yPiα
2
Pi

α2
P − 1

)2

≤

(x2
Pi

+ y2Pi
)α2

P

(1− α2
P )

2

∣∣∣∣(x, y) ∈ R2

} (6)

which can be rewritten as

Ai = {(x− ai)
2 + (y − bi)

2 ≤ R2
i | (x, y) ∈ R2} (7)

ai =
xPiα

2
Pi

α2
Pi
− 1

, bi =
yPiα

2
Pi

α2
Pi
− 1

, Ri =

√
a2i
α2
Pi

+
b2i
α2
Pi

(8)

Since xE = (0, 0) ∈ Ai for all i = 1, . . . ,M , we can con-
clude that xE ∈ ∩Mi=1Ai. Let Ai, the complement of Ai

represent the region of dominance for pursuer i. Then the
space ∪Mi=1Ai is dominated by one or more pursuers. Thus
there must exist a strategy for the pursuers such that the
evader’s position (and thus the capture point) is confined
to the non-pursuer-dominated region, ∪Mi=1Ai = ∩Mi=1Ai.
We now introduce the following additional constraint
to (5)

(x, y) ∈ R (9)

using R to represent the evader-dominated region.
Eq. (9) ensures that the evader can reach the target
(x, y) before any pursuer can.

A. Optimal Pursuer Policy Assumption
As is, (5) is not very useful due to the fact that T is

minimized over M continuous-time pursuer policies. We
now state, without proof, the following

Proposition 1 (Optimal pursuer heading policies). The
pursuers’ optimal heading policy is to take a straight-
line, constant-heading path to (x∗, y∗) where

(x∗, y∗) = argmax
x,y

min
Φ1,...,ΦM

T

Thus the pursuers’ optimal policy can be written as

Φ∗
i = ϕ∗

i (t) = tan−1 y∗ − yPi

x∗ − xPi

, i = 1, . . . ,M, t ≥ 0

Note that because the capture point is constrained to
be inside the evader-dominated region, R, the evader fea-
sibility constraint (3) will always be satisfied. Combining
these results with (2), (5), and (9) yields the following

max
(x,y)∈R

min
i∈{1,...,M}

d((x, y), Pi)αP (10)

B. Numerical Optimization
One final reformulation is necessary to pose the prob-

lem expressed in (10) as an optimization problem. Let
m be a lower bound on the traversal times of all the
pursuers to the point (x, y):

m ≤ d((x, y), Pi)αP , i = 1, . . . ,M

=⇒ m ≤ min
i∈{1,...,M}

d((x, y), Pi)αP

Then (10) can be rewritten as the following linear
program

max
x,y

m (11)

s.t. d((x, y), (ai, bi)) ≤ Ri i = 1, . . . ,M

m ≤ d((x, y), Pi)αP i = 1, . . . ,M

m ≥ 0
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Fig. 3. Numerical solution of collinear pursuers (a) initial guess set
at (x, y) = (0, 0) and m = 1 results in a suboptimal capture on the
line passing through the agents (a local optimum), (b) initial guess
set at (x, y) = (5, 5) and m = 5 results in an optimal capture at
the intersection of the pursuers’ Apollonius circles

Note that the constraints are quadratic and non-convex
which prohibits the use of techniques used to solve linear,
quadratic, or second order cone problems exactly [15].
Thus general-purpose solvers must be used. Issues arise,
however, due to the shape of the objective function in
(11). Figure 3 contains an example with 2 pursuers who
are collinear with the evader. Figure 3b shows the true,
optimal solution at the upper intersection of the pursuers’
Apollonius solution which is equivalent to the lower
intersection. The optimization suffers from sensitivity
to the initial guess as shown in Figure 3a, where the
solver found a local optimum. Systematically computing
all of the solutions in the cases where multiple solutions
exist would be costly and potentially error prone. Also,
determining whether there are multiple solutions would
be difficult.

V. Geometric Approach
We now return to the notion of regions of domi-

nance and discuss the utility of the Voronoi diagram
in the context of this problem as has been noted
in [14], [16], [5], [17], [18]. The Voronoi diagram, in
2D space, defines a tessellation in which each agent
resides in their own cell defining points in space they
can reach before any other agent. Voronoi diagrams are
typically parameterized by a set of vertices, edges, and
generator points (or agent positions in the present case):
V = (V, E , X). Let us define two useful Voronoi diagrams
for the M pursuer 1 evader problem,

VE = (VE , EE , {E,P1, . . . , PM})
VP = (VP , EP , {P1, . . . , PM})

one which includes the evader as a generator point along
with all of pursuers, VE , and one which does not include
the evader, VP . The edges EP are all straight because
the pursuers share the same velocity, however, the edges
in EE surrounding the evader are curved (concave w.r.t.
evader) due to the evader’s inferior speed. Thus VE is in
fact a multiplicatively weighted Voronoi diagram where

the agents’ velocities represent the weights [19]. Also note
that the evader’s cell of VE is exactly R; and this cell’s
edges correspond to segments of the pursuers’ Apollonius
circles while the vertices correspond to intersections of
Apollonius circles. The evader’s dominance region R can
be parameterized as an ordered set of vertices and an
ordered set of arcs between the vertices: R = (VR, ER),
where ER ⊂ EE and VR ⊂ VE .

A. Types of Solutions

In the case of a single pursuer (i = 1), the resulting
solution is well-known [1]: the evader should flee directly
away from the pursuer. Thus capture occurs at

(x∗, y∗) = Ri(1 + αP )
(E − Pi)

d(E, Pi)
(12)

t∗ = d((x∗, y∗), Pi)αP (13)

Single pursuer capture occurs on an arc of the evader’s
dominance region, (x∗, y∗) ∈ ER.

The two pursuer case was also presented by Isaacs as
the two cutters and fugitive ship problem [1]. Recent work
on this same problem has shown that the solution(s) to
this game for the case of simultaneous capture by two
pursuers can be obtained from the intersection of their
Apollonius circles [13]. Intersections of pursuers’ Apollo-
nius circles correspond to vertices of VE in this case, thus
(x∗, y∗) ∈ VR. Also note that these intersections also lie
on edges of VP .

In the case of M ≥ 3, the solution can of course
degenerate to one of the previous cases. However, a new
type of solution arises which occurs in the interior of
the region R. The solution to (10) may occur on the
interior of the evader’s region of dominance R. If this is
the case, we believe the solution is necessarily a vertex
of the Voronoi diagram excluding the evader:

(x∗, y∗) /∈ ∂R =⇒ (x∗, y∗) ∈ VP (14)

A solution of this nature requires at least three pursuers
to participate in the capture. Although we do not prove
this assumption here, some intuition can be built up
around the idea. As we have restricted the velocity of
the pursuers to be constant, a vertex of VP is located
at a point that is equidistant from the three (or more)
nearest pursuers [19]. Thus simultaneous capture by three
or more pursuers occurs at a vertex of VP and this point
is inside R due to (9). The main result is that one can
find solutions to (10) by searching over a finite number
of candidate solutions,

Theorem 1.

(x∗, y∗) ∈ SR ∪ VR ∪ VPR (15)
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where

(x∗, y∗) = arg max
(x,y)∈R

min
i∈{1,...,M}

d((x, y), Pi)αP ,

SR =

{
xi, yi

∣∣∣∣xi, yi = Ri(1 + αP )
E − Pi

d(E, Pi)
,

xi, yi ∈ R, i = 1, . . . ,M

}
,

(16)

VPR = VP ∩R

Proof. The solution to the M pursuer 1 evader problem
is one of the following cases:
Case 1. (x∗, y∗) ∈ SR. Capture is by a single pur-
suer (SR representing single-pursuer solutions inside the
evader’s dominance region). The solution is then given
by (12) according to [1].
Case 2. (x∗, y∗) ∈ VR. Capture is by two pursuers
simultaneously, which occurs in the set VR according
to [13].
Case 3. (x∗, y∗) ∈ VPR . Capture is by three or more pur-
suers simultaneously, which occurs in the set VP ∩R by
the preceding assumption.

B. Categories of Pursuers
The set of pursuers can be broken up into four distinct

categories (or sets):
Category 1. I1 = {i|Pi(t

∗) = E(t∗) = (x∗, y∗)}, “inter-
ceptors”. Pursuers who participate in capturing the
evader according to the solution.
Category 2. I2, “escorts”. Pursuers who cannot reach the
solution in t∗ time but constrain the region R. In other
words, pursuers who are neighbors of the evader in VE .
Additionally, removal of any of these pursuers from the
game would change the solution and increase capture
time.
Category 3. I3, “redundant (a)”. Pursuers who fit the
criteria of I2, but whose removal from the game would
not change the solution or increase capture time.
Category 4. I4, “redundant (b)”. Pursuers who do not
share an edge with (i.e. are not neighbors of) the evader
in VE .

Note that both I3 and I4 are redundant in the sense
that if the pursuers in the first two categories behave
optimally, then pursuers in I3 ∪ I4 cannot affect the
solution. The meaning of an optimal policy for escorts
is difficult to define because their role in pursuit is to
shape the evader’s region of dominance. For the purposes
of the present discussion we assume the escorts head
towards the solution point at maximum speed. A rigor-
ous treatment of an escort’s possible range of optimal
policies is left for future research. Figure 4 provides
an example illustrating each of these categories. In this
example, capture is achieved simultaneously by P1 and
P8. P3’s removal from the game would cause the evader
to flee towards the lower left, so P3 must participate
by shaping R. P2 is a neighbor of E in VE which is
analogous to saying its Apollonius circle partially defines
the boundary of R. Removal of P2 from the game makes

P1

P2
P3

P4

P5

P6P7

P8

P9

P10

EE

interceptor
escort
redundant (a)
redundant (b)

Fig. 4. Categories of pursuers with their Apollonius circles drawn,
and the boundary of the evader’s region of dominance is shown in
dashed magenta.

available additional intersections of Apollonius circles as
candidate solutions, however these points are suboptimal.
Thus P2 does not affect the solution as long as P1, P3,
and P8 behave optimally.

An important distinction between the I3 and I4
categories is that a pursuer can only be identified as
belonging to I3 by finding two solutions (one including
the pursuer and one without). However, I4 pursuers can
be identified, and thus discarded, prior to solving the
problem. Figure 4 shows that the Apollonius circles of
redundant (b) pursuers completely contain R. Out of
the ten pursuers in this example, only four need to be
considered. This provides the motivation for the following
section which includes an algorithm for computing this
reduced set of pursuers, IR = I1 ∪ I2 ∪ I3.

VI. Geometric Algorithms and Improving
Computational Complexity

For very large numbers of randomly placed pursuers,
it has been observed that the size of the reduced pursuer
set, IR, remains close to four unless the pursuers’
positions are highly correlated. Therefore, if R and
IR can be computed quickly (that is, in a scalable
manner), then solving Problem 1 is also scalable under
these assumptions. In other words, the size of the set
of candidate solutions in (15) only depends on the size
of IR.

A. Computing R and IR
The evader’s dominance region is, by definition, a

single cell of the multiplicatively weighted Voronoi di-
agram (MWVD) of all the agents. Computing the entire
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Require: αP < 1
1: function EvaderCell(E, P1, . . ., PM , αP )
2: Let q be a priority queue of tuples, prioritized by

the first element
3: for all Pi do
4: C ← Apollonius(Pi, αP )
5: d← minθ Dist(E, ∂A)
6: q.Enqueue(d,A, Pi, i)

7: d,A, P ← q.Dequeue()
8: V ← {} ▷ cell vertices
9: E ← {C} ▷ cell edges

10: Let R = (V, E) represent the state of the cell
11: IR ← {P}
12: d† ← maxθ Dist(E, ∂A)
13: d,A, P ← q.Dequeue()
14: while d < d† and q ̸= ∅ do
15: U ← {∂A ∩ ∂Aj , ∀Aj ∈ E}
16: if ∃u ∈ U s.t. u ∈ R then
17: V ← V ∪ (U ∩R) ▷ add new vertices
18: V ← V \ (V ∩ C) ▷ prune invalid vertices
19: Recompute E and IR
20: d† ← maxθ Dist(E, ∂R)
21: d,A, P ← q.Dequeue()
22: return R, IR

MWVD is computationally prohibitive for large num-
bers of agents since an optimal algorithm is necessar-
ily O(n2) [20]. Even computing the entire MWVD for the
reduced pursuer set is unnecessary. We now introduce an
algorithm for computing R and IR (on pg. 6), followed
by a discussion of its design and correctness.

The EvaderCell algorithm constructs the region R
incrementally starting with a single Apollonius circle
and then subsequently computing the intersection of the
region with one new Apollonius circle at a time. Line 15
computes the intersections of the new circle with each
circle that comprises the set of arcs defining R. Then,
in line 16, if we find that some of these intersections lie
inside R, then we know the new circle must be added
and R recomputed. It is possible that by adding this new
arc that previous arcs are now outside the current region
and must be pruned. A naive approach to this algorithm
would be to perform this procedure for every pursuer
in the set. We can do better, however, by prioritizing
the order in which we process the pursuers. If we order
the pursuers by increasing distance from the evader to
the closest point on its Apollonius circle we have a
metric that is monotonically nondecreasing as we iterate.
Meanwhile, the furthest distance from the evader to a
point on ∂R is monotonically nonincreasing as R is pared
down each iteration. Once the closest point on a circle
is further than the furthest point on ∂R we need not
consider any additional pursuers.

Lemma 1. The nearest pursuer to E is also a neighbor
of E in VE . This pursuer’s Apollonius circle contributes

an arc to R and also corresponds to the pursuer whose
Apollonius circle has a point closest to the evader (i.e.
the pursuer returned in Line 7).

Proof. The first statement of the lemma follows from the
fact that the pursuers share the same velocity.

argmin
i

min
θ

d(E, ∂Ai)

= argmin
i

Ri − d(E, (ai, bi))

= argmin
i

R2
i − d2(E, (ai, bi))

= argmin
i

(x2
Pi

+ y2Pi
)α2

P

(1− α2
P )

2

−

((
xPiα

2
P

α2
P − 1

− 0

)2

+

(
yPiα

2
P

α2
P − 1

− 0

)2
)

= argmin
i
(x2

Pi
+ y2Pi

)
α2
P

1− α2
p

= argmin
i

d(E, Pi)

Lemma 1 supports the initialization of the iterations
in EvaderCell.

Lemma 2. The value of d is monotonically nondecreasing
with the iterations.

Proof. Once all pursuers have been enqueued to q, the
queue property of q ensures the value d of successively
dequeued elements can only increase or stay the same.

In order to prove the monotonicity of d† we must make
some additional statements about the properties of ∂R
and how it is recomputed at each iteration.

Lemma 3. The point corresponding to the maximum
distance from E to ∂R is in the current set of vertices
or valid single-pursuer solutions.

max
θ

Dist(E, ∂R) = max
v

Dist(E, v), v ∈ V ∪ SR

Proof. First note that each single-pursuer solution is the
furthest point on that pursuer’s Apollonius circle. Let k
represent the number of arcs that comprise ∂R.
Case 1. k = 1. The cell is defined by a single circle whose
furthest point corresponds to a single-pursuer solution.
Case 2. k = 2. The second Apollonius circle intersects
the first at two points. After recomputing R there are
three possibilities:
Case 2.a. The single-pursuer solution from Case 1 is still
in R, thus it is the furthest point.
Case 2.b. The single-pursuer solution of the second
Apollonius circle is in R, thus it is the furthest point.
Case 2.c Neither single-pursuer solution is in R. Note the
distance to each Apollonius circle decreases monoton-
ically away from its respective single-pursuer solution.
Thus the maximum distance must occur at a point
along the boundary that is closest to the single-pursuer
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solution, which is necessarily an intersection (or vertex
in V ).
Case 3. k > 2. These cases follow similar logic to Case
2.

Lemma 4. The value of d† is monotonically nonincreasing
with the iterations.

Proof. During each iteration there are two cases:
Case 1. None of the candidate intersections, U , lie inside
the current region R. Then, d† is not updated and its
value remains the same.
Case 2. At least one candidate intersection, u ∈ U , lies
inside the current region R. The vertices that get added
to V are necessarily inside R and thus cannot be further
away than the value of d†. Similarly, if a single-pursuer
solution of this pursuer or any previous pursuer lies inside
R it also cannot be further away than the value of d†.
Then by Lemma 3, no other point needs consideration.

Lemma 5. When d ≥ d† the EvaderCell algorithm is
finished because pursuers in q do not intersect the region
R.

Proof.

d = min
θ

Dist(E, ∂A) =⇒ d ≤ Dist(E, ∂A) ∀ θ (17)

However, we know the point corresponding to d is unique
unless (a, b) = E, so the inequality is strict. Similarly, we
have

d† = max
θ

Dist(E, ∂R) =⇒ d† ≥ Dist(E, ∂R) ∀ θ

When d = d†, the new Apollonius circle A is tangent to
R at one or more locations (depending on whether or not
the previous inequality is strict). From (17), every point
on ∂A is as far or further than the point corresponding
to d meaning no point on ∂A can be inside R:

d ≥ d† =⇒ Dist(E, ∂A) ≥ d† ∀ θ

=⇒ ∂A ∩ ∂R = ∅

Furthermore, from Lemmas 2 and 4, the values of d and
d† cannot get any closer, thus we have,

d ≥ d† =⇒ ∂Ai ∩ ∂R = ∅ ∀ Ai ∈ q

Figure 5 highlights the benefit of the ordering of
the pursuers in EvaderCell. In this example, there are
10 pursuers, however, only the first seven need to be
considered based on the criteria established in this
section.

Lemmas 1 – 5 show the correctness of EvaderCell.
There are several other interesting properties of SR that
are worth mentioning here.

Lemma 6. The number of single-pursuer solutions inside
the evader dominance region, SR is either 0 or 1,

|SR| ∈ {0, 1}

1 2 3 4 5 6 7

Iteration

0.1

0.2

0.3

0.4

0.5

0.6

d

d†

d

Fig. 5. Comparison of the values of d and d† by iteration for the
example shown in Figure 4

Proof. Suppose ∃si ∈ SR, that is, there is at least one
single-pursuer solution in R. The point si is the furthest
point on the corresponding pursuer’s Apollonius circle
Ai. Also, Ai ⊃ R because R = ∩Mk=1Ak. Thus since
si ∈ R it must also be the furthest point in R. Then
suppose ∃sj ∈ SR, sj ̸= si. There are two cases:
Case 1. d(E, si) < d(E, sj). This is a contradiction since
si is the furthest point in R.
Case 2. d(E, si) > d(E, sj). Using the same arguments
as above, the fact that sj ∈ SR means it should be the
furthest point in R, which contradicts the premise of this
case.

Lemma 7. If ∃ s∗ ∈ SR, then s∗ is closest single-pursuer
solution to E,

s∗ ∈ SR =⇒ s∗ = argmin
si

d(E, si)

where si is described by (12).

The proof is similar to that in Lemma 6 and is omitted.

Lemma 8. If ∃ s∗ ∈ SR then s∗ is the solution to the M
pursuer 1 evader problem (Problem 1 and (10)).

Proof. First note that s∗ ∈ SR =⇒ s∗ ∈ R (from (16)).
Let P ∗ represent the pursuer corresponding to s∗ accord-
ing to (12). From [1], we know that every point that is
not s∗ is suboptimal for the evader, that is,

T (x, y) < t∗ ∀ x, y ∈ R2, x, y ̸= s∗ (18)

Thus if the evader chooses any other point in R the cap-
ture time will decrease. Also, the evader is able to reach
this point without being intercepted en route because it
lies on the boundary of its region of dominance.

1) Complexity: For the purposes of the analysis in
this section, let k represent the number of iterations
completed in EvaderCell.

Lemma 9. The EvaderCell algorithm has time complex-
ity O(M + k logM + k2). When k ≪ M the complexity
becomes O(M).
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Proof. First, q is constructed in O(M) time. Dequeu-
ing an element from a priority queue generally takes
(depending on the specific implementation) O(logM)
time where M is the size of the queue. There are k + 2
total dequeue operations in EvaderCell with total time
complexity O(k logM). The complexity of intersecting
the new Apollonius circle with the circles defining R in
Line 15 is O(k), and is computed at each iteration giving
total complexity O(k2). Checking whether an intersection
point u is inside the region R can be done in O(k) time
due to the parameterization of R as an ordered set of
vertices and arcs. Note that the Dist function can be
computed in constant time when the second argument
is a circle. In the case of Line 20 where the second
argument is the boundary ∂R, some additional reasoning
is needed. From Lemma 3 the maximum distance to ∂R
corresponds to one of the vertices defining R or a single-
pursuer solution in R. The size of the set of vertices, |V |,
is on the order of k; and the number of single-pursuer
solutions to consider is 0 or 1 from Lemma 6. Thus the
total time complexity of Line 20 is O(k2). When k ≪M ,
the M term dominates the k logM and k2 terms.

In the worst case we must iterate through all of the
pursuers, thus k = M and EvaderCell has time complex-
ity O(M2). A more general algorithm for representing the
intersection of M disks as a convex polytope has been
shown to have complexity of Θ(M logM) [21]. This can
be used to construct an alternative algorithm (shown on
pg. 8) with time complexity Θ(M logM) which performs
better in the worst case.

1: function EvaderCell2(E, P1, . . ., PM , αP )
2: Compute Apollonius circles
3: Represent intersection of disks as the intersection

of halfspaces via inversion transform [21]
4: Apply duality transform and compute convex

hull [22]
5: Apply duality transform on convex hull to get

polyhedron P
6: Intersect P with sphere corresponding to XY

plane [21]
7: Invert intersection to get R
8: return R

To justify its use despite poor worst-case performance,
we ran EvaderCell over a range of M with different
random distributions over the pursuer positions and
αP = 0.5. Figure 6 shows a weak correlation (Pearson
correlation coefficient of 0.08) between k and M . In
general, k remains relatively small even as M reaches
numbers in the thousands. However, when the pursuer
positions are highly correlated then k and M are also
highly correlated (Pearson correlation coefficient of 1) as
seen in Figure 7.
B. M Pursuer 1 Evader Algorithm

Once R and IR have been computed, solving Prob-
lem 1 and (10) is straightforward. Lemma 8 already
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k

xP , yP ∼ U(−10, 10)

Fig. 6. Simulation results of EvaderCell, k versus M for αP = 0.5
and uncorrelated pursuer positions: xP , yP ∼ Uniform(−10, 10)

provides one type of solution which is capture by a single
pursuer. This type of solution can be easily tracked by
modifying EvaderCell to keep a record of the pursuer with
the closest single-pursuer solution distance (i.e. (12)) to
E. From Theorem 1, the two other sets of potential
solutions are VR, which is computed in EvaderCell, and
VPR . Fortune’s Algorithm can be used to compute the
Voronoi diagram on the reduced pursuer set, IR [23].
Then, computing VPR is a matter of checking each vertex
of the Voronoi diagram to see if it is inside R. The
following algorithm computes solutions to the M pursuer
1 evader problem.

1) Complexity:

Theorem 2. The Mpursuer1evader algorithm has time
complexity of O(M + k logM + k2).

Proof. The call to EvaderCell in Line 2 has time com-
plexity of O(M +k logM +k2) from Lemma 9. Tracking
SR in EvaderCell can be done in constant time for
each iteration. The call to Fortune’s algorithm in Line 8
has time complexity of O(|IR| log |IR|) [23]. Note that
|IR| ≤ k because in each iteration of EvaderCell only
one pursuer may be added, however one or more may
be removed. Thus the time complexity of Line 8 is no
worse than the time complexity of Line 2. The size of
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Fig. 7. Simulation results of EvaderCell, k versus M for
αP = 0.5 and highly correlated pursuer positions: [x y]⊤ ∼
Normal([10 10]⊤, I2)
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1: function Mpursuer1evader(E, P1, . . ., PM , αP )
2: R, IR,SR ← EvaderCell(E,P1, . . . , PM , αP )
3: if ∃s∗ ∈ SR then
4: (x∗, y∗)← s∗

5: Let P ∗ be the pursuer corresponding to s∗

6: t∗ ← d((x∗, y∗), P ∗)αP

7: else
8: VP ← Fortune(IR) ▷ [23]
9: VPR ← VP ∩R

10: V ← VPR ∪ VR
11: (x∗, y∗)← argmax(x,y)∈V

minPi∈IR d((x, y), Pi)αP

12: t∗ ← max(x,y)∈V minPi∈IR d((x, y), Pi)αP

13: return (x∗, y∗), t∗

the set of vertices returned from Fortune’s algorithm is
at worst O(|IR|) [23]. Checking to see if a point is inside
R is at worst O(k) (cf. proof of Lemma 9). Thus the
total time complexity of Line 9 is at worst O(k2). It is
simple to see that |V | = O(k) since |VPR | = O(|IR|) and
|VR| = O(k). Finally, the number of values searched over
in Lines 11 and 12 is |V | · |IR|, yielding worst-case time
complexity of O(k2).

VII. Results
The overall objective of this investigation is to utilize

cooperation amongst agents on the same team. In this
case the pursuers should cooperate in order to reduce
the capture time of the evader compared to approaches
where each pursuer is selecting its heading independent of
the other pursuers. Pure pursuit (PP) and proportional
navigation (PN) are two common policies for an agent
pursuing a target. These policies are simply functions
of the state of the pursuer implementing the policy and
the target’s current state (position and velocity). The
approach outlined in this paper will be referred to as
the geometric (G) policy. In order to compare these
three policies, it is necessary to construct a discrete-
time simulation wherein each policy is implemented in
a feedback fashion (i.e. the states are observed by every
agent and used to compute its control input at each time
instant). Agents who implement the G policy will move
towards the solution point (x∗, y∗) computed in that
time instant. For each simulation, the evader implements
the G policy by computing a velocity 0 ≤ vE ≤ vEmax

such that the evader reaches the solution point at the
capture time t∗. Note that in the case where the pursuers
implement the G policy, all the agents move towards the
solution point and thus the point does not change over
time; thus simulation of this scenario is trivial as the
capture time must be t∗. However, in cases where the
pursuers do not implement the G policy, the solution
point (x∗, y∗) may jump discontinously thereby causing
the evader to change heading abruptly.

Figure 8 show the trajectories for the simulations of
each policy. The time step in all the simulations is
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Fig. 8. Simulation results for different pursuer policies against an
evader implementing the optimal (G) policy.

TABLE I
Capture times between the 3 different policies

Policy Capture Time t/t∗

PP 0.955 1.273
PN, N=1.2 0.854 1.139
PN, N=1.8 0.755 1.007

G 0.750 1.000

0.05 seconds and the initial conditions are the same.
Note that two simulations were done for the PN policy
because of the sensitivity of the pursuer trajectories to
the navigation constant N (c.f. [24]). It is evident that
the PN policy struggles in the presence of abrupt heading
changes by the evader. When it is not advantageous for
the evader to switch headings, as in Figure 8d, the result
is similar to the G policy. As seen in Table I, the G policy
outperforms PP and PN. Thus there is a clear benefit to
employing a cooperative pursuer strategy over one where
the pursuers behave independently.

VIII. Conclusions
In this paper, the two cutters and fugitive ship problem

posed by Isaacs [1] and solved by Garcia et al. [13] was
extended to consider any number of pursuers. The
main simplification used was that the optimal pursuer
heading policies result in constant-heading (straight-
line) paths, which was proven to be true in both the
single and two pursuer cases. We identified three possible
solution types for the M pursuer 1 evader problem:
capture by a single pursuer, capture by two pursuers
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simultaneously at the intersection of their Apollonius
circles, and capture by three or more pursuers at a
vertex of the pursuer-pursuer Voronoi diagram. Four
unique categories of pursuers were identified: interceptors
(pursuers who capture the evader), escorts (pursuers
who constrain the evader’s dominance region), and two
types of redundant pursuers who do not affect the
outcome of the game. Two scalable geometric algorithms
were presented: EvaderCell, which computes the evader’s
region of dominance, and Mpursuer1evader which com-
putes the solution. Both algorithms have worst-case time
complexity of O(M + k logM + k2), where M is the
number of pursuers and k is the number of pursuers
iterated through in EvaderCell.

Ongoing and future research efforts related to this
topic include proving the optimality of the pursuer
heading policies, characterizing optimal evader paths to
interior solutions, characterizing optimal escort policies,
and proving that these solutions are in fact solutions
to the differential game. Possible extensions to this
work include analyzing the use of Mpursuer1evader in
a feedback control policy with a discrete time step,
inclusion of sensor noise, inclusion of capture radius, and
inclusion of higher order dynamics (e.g. turn constraints).
Overall, this work is leading towards the goal of scalable
analysis of M vs. N types of scenarios.
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